Stability diagram for the forced Kuramoto model.

نویسندگان

  • Lauren M Childs
  • Steven H Strogatz
چکیده

We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Kuramoto model with distributed shear

We uncover a solvable generalization of the Kuramoto model in which shears (or nonisochronicities) and natural frequencies are distributed and statistically dependent. We show that the strength and sign of this dependence greatly alter synchronization and yield qualitatively different phase diagrams. The Ott-Antonsen ansatz allows us to obtain analytical results for a specific family of joint d...

متن کامل

Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation

We develop some computer-assisted techniques for the analysis of stationary solutions of dissipative partial differential equations, their stability, as well as bifurcation diagrams. As a case study, these methods are applied to the Kuramoto-Sivashinski equation. This equation has been investigted extensively, and its bifurcation diagram is well known from a numerical point of view. Here, we de...

متن کامل

همگام‌سازی در مدل کوراموتو با نیروی وابسته به زمان در شبکه‌های پیچیده

In this paper, a generalization of the Kuramoto model is introduced by explicit consideration of deterministically time-varying periodic external force. In this model, the oscillator's natural frequencies and amplitude of collective oscillations are influenced by external forces with constant or random strengths. Then, the synchronization behavior of forced Kuramoto model is studied in some com...

متن کامل

Chaotic Attractor in the Kuramoto Model

The Kuramoto model of globally coupled phase oscillators is an essentially nonlinear dynamical system with a rich dynamics including synchronization and chaos.We study the Kuramoto model from the standpoint of bifurcation and chaos theory of low-dimensional dynamical systems. We find a chaotic attractor in the four-dimensional Kuramoto model and study its origin. The torus destruction scenario ...

متن کامل

Hybrid method for studying the effect of the material change on the blade vibration behavior

To increase the production efficiency of a typical turbine blade, it is necessary to change its material and hence its production technology. In this respect and in order to make sure that newmat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 18 4  شماره 

صفحات  -

تاریخ انتشار 2008